Crystal structure of tribenzyl(2-pyridinethiolato- N oxide)tin(IV): a rare example of a square pyramidal organotin(IV) compound

Seik Weng Ng ${ }^{\text {a }}$, Chen Wei ${ }^{\text {b }}$, V.G. Kumar Das ${ }^{\text {b }}{ }^{\star}$
${ }^{a}$ Institute of Advanced Studies and ${ }^{b}$ Department of Chemistry, University of Malaya, 59100 Kuala Lumpur (Malaysia)
and Thomas C.W. Mak *
Department of Chemistry, The Chinese University of IIong Kong, Shatin, New Territories (IIong Kong) (Received April 9th, 1987)

Abstract

Tribenzyl(2-pyridinethiolato- N-oxide)tin(IV), $\quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\left(2-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{NO}\right)\right]$, crystallizes in space group $P \overline{1}$, with a 9.169(2), b 10.498(3), c 13.511(4) \AA, α 91.54(2), $\beta 104.61(2), \gamma 112.49(2)^{\circ}$ and $Z=2$. The structure has been refined to $R=0.028$ using 4593 observed Mo- K_{α} reflections. The molecule adopts a configuration displaced 91% from a trigonal bipyramid to a square pyramid along the Berry pseudorotation pathway. The basal plane is composed of the oxygen and sulfur atoms of the chelating 2-pyridinethiolato ligand and the carbon atoms of two benzyl groups [$\mathrm{Sn}-\mathrm{O} 2.261(2), \mathrm{Sn}-\mathrm{S} 2.577(1), \mathrm{Sn}-\mathrm{C} 2.189(3), 2.196(3) \mathrm{A}]$. The apical tin-carbon bond $[\mathrm{Sn}-\mathrm{C} 2.167(3) \AA]$ is shorter than the other two tin-carbon bonds. The tin atom is displaced $0.64(1) \AA$ from the basal plane in the direction of the apical carbon [sum of the basal angles $=341.7(4)^{\circ}$] and the $\mathrm{C}_{\text {apical }}-\mathrm{Sn}-\mathrm{L}_{\text {basal }}$ angles are in the range $100.1(1)-110.1(1)^{\circ}$. The unusual geometry of tribenzyl(2-pyridinethiolato- N-oxide)tin(IV) provides the first example of polytopal dominance of the square-pyramidal configuration in pentacoordinated organotin compounds.

Introduction

Although there have been several reports of pentacoordinated triorganotin(IV) chelates, only the following have been crystallographically authenticated: trimethyl-tin- [1] and triphenyltin- [2] N-benzoyl- N-phenylhydroxamates, triphenyltin-1,3-di-phenylpropane-1,3-dionate [3], triphenyltin-quinoline-8-thiolate [4] and triphenyltin 2-(2-hydroxy-5-methylphenyl)azobenzoate [5]. The tin atom in each structure is in a trigonal bipyramidal (TBP) environment, with the donor atoms of the chelating ligand spanning one equatorial and one axial site, thereby forcing one of the three
tin-bound organic groups into an axial position. The afternative chain structure involving intermolecular chelation of the ligand, such as observed in tribenzyl- [6] and other triorganotin [7] carboxylates, is not adopted in the five examples even though such a bonding mode would allow the attamment of the preferred axially-most-electronegative configuration. The latter configuration which is general for pentacoordinated triorganotin structures, has recently been shown to pretail as well in TBP structures of tetraorganotin triptych compounds such as $\left[\mathrm{CH}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]$ [8]. The internally-coordinated compound. [3-(2-pyridyl)-2-thienyl]tri(p tolyl)tin. on the other hand, adopts a geometry intermediate between tetrahedral and TBP [9]. This intermediate geometry is also found in. for example, the triorganotin derivatives of dithiocarbamic [10] and substituted benzoic [11.12] acids. The tendency to achieve higher-than-four coordination at tin in these compounds is moderated by the dictates of strain in the four-membered rings. ($\mathrm{E}=\mathrm{O}, \mathrm{S}$).

and by steric and electron-pair repulsion terms. Such compounds are best described as 'pseudo-pentacoordinated', and they must be distinguished from 'true' pentacoordinate structures whose geometries deviate significantly from idealized TBP. A particularly facile distortional mode which has been well-documented for pentacoordinated cyclic phosphoranes [13] and silicates [14-16] is the Berry intramolecular ligand exchange coordinate [17] involving the TBP and square pyramid (SP) as the extreme geometries. The Berry mechanism reflects the intrinsic non-rigidity of these two representative geometries, and indeed, the SP is simply an intermediate state in the interchange of axial and equatorial groups of the dominant TBP polytype.

Although the SP geometry was hitherto unknown among organotin compounds, crystallographic evidence for it exists for the inorganic structures. $\mathrm{K}, \mathrm{SnO}_{3}$ [18], $\mathrm{SnTa}_{2} \mathrm{O}_{7}[19]$ and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+}\left[\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~S}_{2}\right)_{2} \mathrm{SnCl}\right]\right.$ [20]. Holmes and co-workers have reported a quantitative assessment of the distortion of the TBP tovards SP geometry for cyclic phosphoranes and silicates using the criteria of dihedral angles [13-16]. The dihedral angle δ_{1}, is the angle between the normals to the TBP faces that have the common edge i, and is the one most intimately associated with the Berry exchange coordinate. This dihedral angle has a value of 53.1° for an idealized TBP but becomes 0° as the edge $i j$ disappears on forming the SP.

We have used the above criteria to evaluate the crystallographic data for tribenzyl(2-pyridinethiolato- N-oxide)tin(IV) and to demonstrate that it exists in a unique SP configuration. A preliminary report describing this result has appeared [21].

Experimental

Synthesis

Tribenzyltin chloride (4.27 g .10 .0 mmol) was added to an aqueous solution of sodium 2-pyridinethiolate N-oxide (a 35% solution supplied by Tokyo Kasei Japan: 4.5 g . approx. 10 mmol) and the minimum amount of ethanol was added to dissolve the reactants. The mixture was briefly stirred and the product was precipitated by

Table 1
Analytical data (Found (calc) (\%)) for organotin 2-pyridinethiolato- N -oxides and tribenzyltin compounds

| | M.p.
 $\left({ }^{\circ} \mathrm{C}\right)$ | C | H | N |
| :--- | ---: | :--- | :--- | :--- | :--- |
| $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$ | $113-114$ | $58.00(58.02)$ | $3.96(3.99)$ | $2.87(2.94)$ |
| $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$ | $93-94$ | $59.77(60.27)$ | $4.86(4.83)$ | $2.67(2.70)$ |
| $\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$ | $92-93$ | $55.55(55.90)$ | $7.53(7.49)$ | $2.85(2.84)$ |
| $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnSC}(\mathrm{S}) \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ | $94-95$ | $56.27(56.28)$ | $5.35(5.28)$ | $2.74(2.74)$ |
| $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsO}$ | $138-139$ | $61.71(62.47)$ | $4.81(4.80)$ | |

Table 2
Data collection and processing parameters for tribenzyl(2-pyridinethiolato- N -oxide)tin

Molecular formula	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NOSS} \mathrm{n}$	
Molecular weight	518.24	
Crystal size	$0.34 \times 0.32 \times 0.22 \mathrm{~mm}^{3}$	
No. of reflections for lattice	21	
Cell constants	$a 9.169(2) \AA \quad \alpha 91.54(2)^{\circ}$	
	$b 10.498(3) \AA \quad \beta 104.61(2)^{\circ}$	
	c 13.511(4) $\AA \quad \gamma 112.49(2)^{\circ}$	
	$\begin{aligned} & V 1151.6(5) \AA^{3}, \quad Z=2 \\ & F(000)=523.94 \end{aligned}$	
Density (exptl)	$1.51 \mathrm{~g} \mathrm{~cm}^{-3}$ (flotation in $\mathrm{KI} / \mathrm{H}_{2} \mathrm{O}$)	
Density (calcd)	$1.495 \mathrm{~g} \mathrm{~cm}^{-3}$	
Space group	$P \overline{1}$	
Standard reflections	(212), (301)	
Intensity variation	$\pm 1 \%$	
$R_{\text {int }}$ (from merging equivalent		
Absorption coefficient	$12.16 \mathrm{~cm}^{-1}$	
Mean $\mu \mathrm{r}$	0.17	
Transmission factors	0.723 to 0.854	
Scan mode and rate	$\omega-29 ; 2.02-8.37 \mathrm{deg} \mathrm{min}^{-1}$	
Scan range	1° below $K_{\alpha_{1}}$ to 1° above $K_{\alpha_{2}}$	
Background counting	stationary counts for one-half of scan time at each end of scan	
$2 \theta_{\text {max }}$	52°	
hkl	$0 \leq h \leq 11,-13 \leq k \leq 12,-17 \leq l \leq 16$	
Unique data measured	4916	
Observed data with		
$\left\|F_{\mathrm{o}}\right\|>3 \sigma\left(\left\|F_{\mathrm{o}}\right\|\right), n$	4593	
Number of variables, p	271	
$R=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / \Sigma\right\| F_{\mathrm{o}}\right\|$	0.028	
Weighting scheme	$w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0005\left\|F_{\mathrm{o}}\right\|^{2}\right]^{-1}$	
$w R=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w\left\|F_{\mathrm{o}}\right\|^{2}\right]^{1 / 2}$	0.035	
$S=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} /(n-p)\right]^{1 / 2}$	1.140	
$(\Delta / \sigma)_{\text {max }}$	0.002	
Residual extremes in final difference map	+0.72 to $-0.54 \mathrm{e}^{\AA} \AA^{-3}$	

adding water. Single crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform. Other organotin derivatives of the ligand were similarly prepared, although $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}(2-\mathrm{SPyO})_{2}\right] \quad(2-\mathrm{SPyO}=$ amion of $2-$ pyridinethiol- N-oxide) was the unexpected product in the reaction of stoichiometric amounts of the ligand and trimethyltin chloride. For comparison, three additional tribenzyltin compounds, namely the adduct $\left[\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{CH}_{2}\right)_{8} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right.$ AsO] the dithiocarbamate $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnSC}(\mathrm{S}) \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and the acetylacetonate $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\left(\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CHC}(\mathrm{O}) \mathrm{CH}_{3}\right)\right]$, were prepared by conventional methods [22]. The analytical data for the compounds (obtaned by the Microanalytial Service. University College. London (UK) along with their decomposition tomperatures. are listed in Table 1.

Phwical measurements

X-Ray cristallography

Diffraction measurements were made on a Nicolet R3m four-circle diffractoneter (graphite-monochromatized Mo-Ka radiation. $\lambda 0.71079$ 4) and determination

Table 3
Fractional atomic coordinates $\left(\times 10^{5}\right.$ for Sn and $\mathrm{S} . \times 10^{4}$ for $\mathrm{O} . \mathrm{N}$ and (atoms) and equivalent isotropic temperature factors" $\left(A\right.$ " $\times 10^{4}$ tor Sn and $\mathrm{S} \times 10^{*}$ for O N and C atoms)

Atom	-	I	\therefore	l_{6}
S_{1}	$6060(2)$	1820(2)	1998911	33813
S	--20317(9)	$342(8)$	65,926)	5843
\bigcirc	-982(2)	- $2100(2)$	$14292)$	$4(6)$
N	-26173)	- $2487(2)$	12092	4111
(11)	3296131	15893)	Q 2 (2)	431
(12)	--5010.4	-205844	6179	571
(13)	- $5931(4)$	‥33554	$7 \times 73)$	69.21
C(4)	$-5187(4)$	4227(4)	11893	00^{21}
(15)	- $3317(4)$	- 376663	13998	Sका)
(16)	18874)	225043	1597(3)	4 11
(17)	139003	334431	192842)	411:
C(8)	$387(4)$	$3818(3)$	12142)	4911
(9)	- 38 (4)	486943	15056 3	OU(1)
C(10)	471(5)	545593	250043	6为)
C(1)	1442 (5)	$4994(3)$	323783	(1)
(12)	1891(4)	39413	29464	59,1
C(13)	24823)	-6736)	220921	44:1)
C(14)	41283	$451(3)$	27319	4, 1)
(15)	520344	113883	216931	5311
$C(16)$	6711(4)	221444	205143	69\%
C(17)	$7166(4)$	$2625(4)$	36914	793:
C(18)	$6118(5)$	1948(5)	4259(3)	8112
C(19)	4621(4)	8714	3784	29(1)
C(20)	37(4)	3923	344121	4act
C(21)	--1111(4)	-934.3)	36856	4311
C(2)	- - 569(4)	- 14.409	$40141 \cdot 1$	- ¢1:
(23)	--16296	- $3162(4)$	42806	74,
C(24)	--3279(6)	$-3439(4)$	4047(3)	
C(25)	- $3842(5)$	$\cdots 24009$	1)24] 6	9\%
C(26)	--2766(4)	- 121114	39113	511

[^0]of crystal class, orientation matrix and accurate unit-cell parameters were performed according to established procedures [23a]. Intensities were recorded at $22^{\circ} \mathrm{C}$, and data collection and processing parameters are summarized in Table 2. Application of absorption corrections was based on a pseudo-ellipsoidal fit to azimuthal scans of selected strong reflections over a range of 2θ values [23b,23c]. The intensities were processed by the learned-profile procedure [23d]. Structure solution was accom-

Table 4

Molecular dimensions (bond lengths (\AA), angles $\left({ }^{\circ}\right)$) of tribenzyl(2 -thiolatopyridine- N-oxide)tin (with standard deviations in parentheses)

Sn-S	2.577(1)	$\mathrm{Sn}-\mathrm{O}$	2.261(2)
$\mathrm{Sn}-\mathrm{C}(6)$	$2.196(3)$	Su-C(13)	$2.189(3)$
$\mathrm{Sn}-\mathrm{C}(20)$	$2.167(3)$	$\mathrm{S}-\mathrm{C}(1)$	$1.716(3)$
$\mathrm{O}-\mathrm{N}$	$1.342(3)$	$\mathrm{N}-\mathrm{C}(1)$	$1.362(4)$
$\mathrm{N}-\mathrm{C}(5)$	$1.350(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.402(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.366(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.366 (5)	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.485(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.400(4)$	$C(7)-C(12)$	$1.381(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.383(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.347(6)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.389(6)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1.397(6)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.491(3)$	$C(14)-C(15)$	$1.390(5)$
$\mathrm{C}(14)-\mathrm{C}(19)$	$1.387(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.387(4)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.366(7)$	$\mathrm{C}(17)-\mathrm{C}(18)$	1.378 (6)
$C(18)-\mathrm{C}(19)$	$1.379(4)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.495(4)$
$C(21)-C(22)$	1.391 (5)	$\mathrm{C}(21)-\mathrm{C}(26)$	$1.386(5)$
$\mathrm{C}(22)-\mathrm{C}(23)$	1.368(5)	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.380(7)$
$C(24)-C(25)$	$1.382(7)$	$C(25)-C(26)$	$1.386(5)$
$\mathrm{S}-\mathrm{Sn}-\mathrm{O}$	72.9(1)	$\mathrm{S}-\mathrm{Sn}-\mathrm{C}(6)$	88.0(1)
$\mathrm{O}-\mathrm{Sn}-\mathrm{C}(6)$	147.4(1)	$\mathrm{S}-\mathrm{Sn}-\mathrm{C}(13)$	140.4(1)
$\mathrm{O}-\mathrm{Sn}-\mathrm{C}(13)$	79.0.(1)	$\mathrm{C}(6)-\mathrm{Sn}-\mathrm{C}(13)$	101.8(1)
S-Sn-C(20)	102.0(1)	$\mathrm{O}-\mathrm{Sn}-\mathrm{C}(20)$	100.0(1)
$\mathrm{C}(6)-\mathrm{Sn}-\mathrm{C}(20)$	109.9(1)	$\mathrm{C}(13)-\mathrm{Sn}-\mathrm{C}(20)$	110.1(1)
$\mathrm{Sn}-\mathrm{S}-\mathrm{C}(1)$	97.0(1)	$\mathrm{Sn}-\mathrm{O}-\mathrm{N}$	116.7(2)
$\mathrm{O}-\mathrm{N}-\mathrm{C}(1)$	120.0(2)	$\mathrm{O}-\mathrm{N}-\mathrm{C}(5)$	117.2(3)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	122.8(2)	$\mathrm{S}-\mathrm{C}(1)-\mathrm{N}$	119.0(2)
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	124.0(3)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	117.0(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.6(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.5 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.6 (3)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4)$	120.5(3)
$\mathrm{Sn}-\mathrm{C}(6)-\mathrm{C}(7)$	114.9(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.8(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	122.1(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	117.1(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.1(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.3(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.2(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.0(3)
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	121.2(3)	$\mathrm{Sn}-\mathrm{C}(13)-\mathrm{C}(14)$	109.2(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.0(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	121.2(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	117.8(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.9(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.5(4)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.3(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.6 (4)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	120.9(3)
$\mathrm{Sn}-\mathrm{C}(20)-\mathrm{C}(21)$	114.2(2)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	121.5(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(26)$	120.7(3)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	117.8(3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	121.3(4)	$C(22)-C(23)-C(24)$	120.6(4)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	119.0(4)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	120.2(4)
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	120.9(4)		

Table 5
Least-squares planes and dihedral angles
Least-squares planes "

Plane	Atoms in plane	Equation of planc				moms 4×10^{3}
		I	m	n	d	
1	S. O. C(6), C(13)	-0.1298	0.2364	0.9630	17538	51.6
2	O. N. C(1)-C(5)	0.1105	0.3008	0.9261	1.3060	$\therefore \%$
3	Sn, O, N	0.0311	- 0.0 .1960	0.9801	2.5244	
4	S. $C(6), C(20)$	-0.0.2920	0.9225	0.2523	1.5269	
5	S. O, C(20)	$\cdots-0.8868$	-0.1425	0.4397	1.9521	
6	C(6). C(13). C120)	0.8192	0.2431	0.5195	2.5266	
7	O. C(13), C(20)	0.0197	-0.7323	0.6807	2.86011	
8	S, C(6), (13)	$\cdots 0.1507$	0.2057	0.9669	1.7186	
9	S. O. (1, 3)	\cdots	0.2873	0.9532	1.6684	
10	S. O. C(6)	--11658	0.26 .31	0.9504	1.7648	\cdots
11	O, C(6), C(13)	-0.0890	0.2161	0.9723	1.8345	
12	C(7)-C(12)	0,819.3	0.3912	0.4192	1.176	$\therefore 7$
13	C(14)-C(19)	-0.4253	0.9031	-0.0604	-2.4988	3.4
14	C(21)-C(26)	0.1879	0.3762	0.907 .3	4.8872	37

Dihedral angles berween planes,

Planes	Angles (${ }^{\circ}$)	Planes	Angles (${ }^{\circ}$)	Planes	Angles (${ }^{\circ}$)	Planes	Amgles $\left(^{\circ}\right.$)
4-5	76.2	6-8	64.6	$5 \ldots 10$	58.2	214	4.7
6-7	78.9	5.9	62.5	7.11	59.9	1.12	05.3
89	5.7	79	04.1	10-11	5.3	$1-13$	78.8
4-6	83.3	6-11	61.0	2.3	32.8	1-14	20.2
5-7	67.3	4-S	61.5				

" Equation of plane is in the form $l X_{0}+m Y_{0}+n Z_{0}=d$. where X_{0}, Y_{0}, Z_{0} are orthogonal coordinates in
 deviation ca. 0.4°.
plished by means of Patterson and Fourier methods. All non-hydrogen atoms in the asymmetric unit were subjected to anisotropic refinement. The hydrogen atoms of the aromatic rings and methylene groups were generated geometrically $[d(\mathrm{C}-\mathrm{H})$ fixed at 0.96 A] and included in structure factor calculations with assigned isotropic thermal parameters. All computations were performed on a Data General Nova 3/12 minicomputer with the SHELXTL system [23e]. Analytic expressions of neutral-atom scattering factors incorporating the real and imaginary components of anomalous dispersion were employed $[23 \mathrm{f}]$. Blocked-cascade least-squares refinements $[23 \mathrm{~g}]$ converged to the R indices and oher parameters listed in Table 2. Fractional atomic coordinates of the non-hydrogen atoms are given in Table 3 bond distances and angles in Table 4 and dihedral angles and least-squares planes in Table 5; tables of hydrogen coordinates and their temperature factors. structure factors and anisotropic thermal parameters are available from the authors on request.

Mössbauer spectra

These were recorded at 80 K on a Cryophysics Mössbauer spectrometer as described previously [24] and the data are presented in Tahle 6.

Table 6
${ }^{119 \mathrm{~m}} \mathrm{Sn}$ Mössbauer data ${ }^{a}$ for tribenzyltin and related compounds ($\mathrm{mm} \mathrm{s}^{-1}$)

	$I S^{b}$	$Q S$	Γ_{1}	Γ_{2}
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$	1.15	1.86	1.54	1.49
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$	1.32	1.99	0.99	1.00
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CII}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO}) / \mathrm{C}_{6} \mathrm{H}_{6}$	1.31	1.99	0.94	0.91
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO}) / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.32	2.02	1.00	1.00
$\left(\mathrm{c}_{5}-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$	1.45	2.44	0.97	0.96
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl}$	1.51	3.00	1.15	1.06
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsO}$	1.42	3.19	0.93	0.90
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnSC}(\mathrm{S}) \mathrm{N}_{2}\left(\mathrm{CH}_{3}\right)_{2}$	1.46	1.94	0.92	0.89
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnOC}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{CH}_{3}{ }^{c}$	1.19	1.23	1.03	1.04

${ }^{a}$ Error $\pm 0.05 \mathrm{~mm} \mathrm{~s}^{-1}$. ${ }^{\text {b }}$ Relative to CaSnO_{3} or BaSnO_{3}. ${ }^{\text {C }}$ Formulation based on satisfactory ${ }^{1} \mathrm{H}$ NMR spectral integration. This compound was slightly air-sensitive.

NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra were recorded at ambient temperatures in CDCl_{3} using a JEOL PMX60si NMR spectrometer. The data are given in Table 7 along with the complete proton-decoupled ${ }^{13} \mathrm{C}$ NMR data, which were obtained on a JEOL JMN FX-100 instrument operating at 25.00 MHz , using CDCl_{3} as solvent and internal lock.

Table 7
NMR data for organotin 2-pyridinethiolato- N -oxides and tribenzyltin compounds

${ }^{1} \mathrm{H}$ NMR			
Compound		${ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{C}-{ }^{1} \mathrm{H}\right)(\mathrm{Hz})^{a}$	
$\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$		64.5	
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO}){ }^{\text {c }}$		66.3	
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl}$		$66.3{ }^{\text {b }}$	
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl}^{\text {c }}$		71.3	
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} /$ Quin- N -oxide ${ }^{d}$		70.8	
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsO}$		82.3	
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnSC}(\mathrm{S}) \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$		67.1	
${ }^{13} \mathrm{C} \mathrm{NMR}$			
Compound	${ }^{n} J\left({ }^{199} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)(\mathrm{Hz})$	$\delta_{\text {R-Sn }}$ (ppm)	$\delta_{2-\mathrm{SPyO}}$ (ppm)
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$	311.3	27.9 (benzyl)	119.9, 128.5, 136.6,
		123.4, 127.3, 127.9, 128.2	141.5, 153.8
$\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$	347.9 (C(1))	35.6	$\begin{aligned} & 119.5,126.2,128.7 \\ & 137.2,154.0 \end{aligned}$
	17.1 (C(2))	32.0	
	$67.1(\mathrm{C}(3))$	30.6	
	- (C(4))	27.2	
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}(2-\mathrm{SPyO})$	619.1 (ipso)	144.5	119.7, 128.1, 128.5,
	46.9 (ortho)	136.5	137.0, 154.1
	61.5 (meta)	128.3	
	13.7 (para)	128.7	

[^1]
Results and discussion

A stereoview of the title compound with atom labeling is shown in Fig. I. while Fig. 2 depicts the content of the unit cell. The basic structural form assumed by the discrete molecule is a square pyramid with two benzyl groups occupying the basal plane and the third in the apical position. This is clearly seen from the frans hasal angles. $\mathrm{C}(13) \mathrm{Sn} \mathrm{S}$ and C 6 Sn O . which have values of $140.4(1)$ and $147.4(1)^{\circ}$. respectively. These angles are close to the idealized 150° angle. The four atoms comprising the basal plane are approximately coplanar ($\mathrm{m}=-510 \times 10^{\circ}$ A). with the tin atom displaced $0.64(1)$ A from this plane in the direction of the apical (120) atom. The C(20)-Sn L (basa) angles are in the range $100.1(1)-10.11)^{*}$ (Table 4). relative to the idealized value of 105°. An alternative structure based on a distorted tetrahedron is ruled out by the intramolecular Sn 0 bond distance $\mid 2.261(1)$ Al. which is well within the range observed for the pyridine (and quinolme) - A-oxide adducts of triorganotins $[24-27]$, and which is also shomer than the $\mathrm{Sn}-\mathrm{S}$ bond [2.577(1) A] in the compount. The chelate bite angle is $72.9(1)^{\circ}$: the $S(1) \mathrm{N} O$ fragment [torsional angle $=-0.5(3)^{\circ}$] of the bue-membered. enwelope-shaped chelate ring is virtually planar.

The rigidity of the chelate ring disfavors consideration of a trons alignment of the sulfur and oxygen atoms in either SP or TBP geometry. However, an axal-equatorial coordination mode is possible, and this, a priori, might be expected to favor a cis-TBP geometry unless a combination of ligand constrains and sertic repulsons forces angular slippage to the SP form. That this slippage prevails here is indicated by a quantitative consideration of the $\mathrm{TBP} \leftrightarrow \mathrm{SP}$ distortion along the Berry coordinate. We first consider a TBP configuration at tin. wh the (6) and the electronegative O atoms in the apical positions, as inferred from the (6) Sn O angle of $147.1(1)^{\circ}$. the largest of the © $\mathrm{Sn}-\mathrm{O}$ angles. The important ditedrat angles $\delta_{(t a y n s}$. $\delta_{(03)(12 n)}$ and $\delta_{(n 3,3}$ are defined respectively by the pair of planes $4 \leq .0 .7$ and 8-9 (Table 5). For the ideal case, with all metal ligand distances assumed to be

Fig. 1. Molecular structure of tribenzyl(2-pyridinetholato-8-oxidettin, with nomic labeling and with thermal ellipsoids draxn at 35% probahility level.

Fig. 2. Packing diagram of tribenzyl(2-pyridinethiolato- N -oxide)tin. The origin of the unit cell lies at the lower left corner, with a pointing from left to right at a downward slant. b upward, and c towards the reader.
equal, these three dihedral angles are all 53.1° [28]. In the title compound, the respective angles are $76.2(4) 78.9(4)$ and $5.7(4)^{\circ}$. Thus, the dihedral angles argue against a TBP geometry. In the isomeric possibility with the S and $C(13)$ atoms at the apical positions [C(13)-Sn-S $\left.140.4(1)^{\circ}\right]$, a similar set of dihedral angles can be defined which yields calculated values of 83.3(4), 67.3(4) and 5.3(4) ${ }^{\circ}$. The first set of dihedral angles clearly gives a better fit to the values of $75.7,75.7$ and 0.0° calculated for an ideal SP. With the set of nine dihedral angles $\left[\delta_{\mathrm{C}(20) . \mathrm{S}}, \delta_{\mathrm{C}(13) \mathrm{C}(20)}\right.$, $\left.\delta_{\mathrm{C}(13), \mathrm{O}}, \delta_{\mathrm{C}(20), \mathrm{O}}, \delta_{\mathrm{C}(6), \mathrm{C}(20)}, \delta_{\mathrm{O}, \mathrm{S}}, \mathrm{S}_{\mathrm{C}(6), \mathrm{S}}, \delta_{\mathrm{C}(13), \mathrm{O}}, \delta_{\mathrm{C} 6), \mathrm{C}(13)}\right]$, the calculated percentage displacement [13] towards SP from TBP is 91 . This value contrasts with the $77 \% \mathrm{SP}$ character calculated for the inorganic tin derivative $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]^{+}\left[\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~S}_{2}\right)_{2} \mathrm{SnCl}\right]^{-}$ [20].

The lengths of the $\mathrm{Sn}-\mathrm{C}$ bonds in the title complex are in good agreement with corresponding values for tetrahedral $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{4} \mathrm{Sn}\right][2.18 \AA$ (av.)] [29] and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{Sn}\right]_{2} \mathrm{O}(2.167 \AA)[30]$ and the five-coordinated TBP compound $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnOC}(\mathrm{O}) \mathrm{CH}_{3}\right][2.17 \AA$ (av.)] [6]. The $\mathrm{Sn}-\mathrm{S}$ bond of $2.577(1) \AA$, though longer than the $\mathrm{Sn}-\mathrm{S}$ bonds in $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}\right]_{2} \mathrm{~S}(2.370,2.403 \AA)$ [31], is much shorter than the dative $\mathrm{Sn} \leftarrow \mathrm{S}$ bond in the thiourea adducts of dimethyl- and diphenyltin dichlorides (2.729 and $2.686 \AA$, respectively) [32]. The $\mathrm{N}-\mathrm{C}_{\alpha}$ bonds [1.350(4), $1.362(4) \mathrm{A}]$ in the title compound are virtually of the same length. The pyridine- N oxide plane is twisted with respect to the $\mathrm{Sn}-\mathrm{O}-\mathrm{N}$ plane by $32.8(3)^{\circ}$, in contrast to the sterically favored, near-orthogonal disposition of these planes in TBP complexes of tin and transition metals with monodentate pyridine (or quinoline) $-N$-oxide ligands [24-27]. The phenyl ring of the apical benzyl group is approximately parallel to the pyridine- N-oxide ring [dihedral angle $4.7(4)^{\circ}$] and is $3.321 \AA$ from the pyridyi nitrogen.

The molecules of the title compound are packed in the crystal lattice in such a way as to leave a vacant sixth coordination site opposite to the $\mathrm{Sn}-\mathrm{C}(20)$ bond, rather reminiscent of the structure of square pyramidal pentaphenylantimony [33]; the shortest intermolecular contacts of tin are $\mathrm{Sn} \cdot \cdot \mathrm{Sn}^{\prime} 5.205$ and $\mathrm{Sn} \cdots \mathrm{S}^{\prime} 4.147$ \AA, where the primed atoms are at $(-x,-y,-z)$. Although the extent of influence of packing forces on the present structure is unknown, we note that they have been
invoked to explain the SP preference of the antimony atom in [K(18-crown6) $]\left[\left(\mathrm{PhSbI}_{2}\right)_{4} \mathrm{I}\right][34]$.

The Mössbauer spectral data for the title compound have been compared with the triphenyl- and tricyclohexyl-tin analogues and with some selected tribenzyltin systems in Table 7. The magnitudes of the isomer shift values of the triorganotin compounds of 2-pyridinethiolato- N -oxide are seen to increase in the order $\mathrm{C}_{6} \mathrm{H}_{5}<$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}<$ cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$, consistent with the σ-donor properties of the organic moieties. The quadrupole splitting ($Q S$) values. however, do not permit an unambiguous assignment of the coordination number of tin in these systems, Nevertheless. we are inclined to view the geometry of the tricyclohexylin derivative as essentially tetrahedral rather than cis-TBP by analogy with other tricyclohexyltin systems. The Mössbauer data for the title compound were essentially unchanged when recorded for frozen samples in benzene or pyridine. The $Q S$ value for $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsO}\right]$ is in the range expected for TBP structures with equatorial locations of the organic groups [35]. The $Q S$ for the acetylacetonate derivative appears to be extremely small for a cis TBP configuration.

In solution the tribenzyltin compounds appear to be essentially four-coordinate except for the adduct $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsO}\right]$, as deduced from their ${ }^{1} \mathrm{H}$ NMR spectra compared to the spectrum of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl}\right]$. The $\left.{ }^{2} /{ }^{119} \mathrm{Sn} \mathrm{C}^{1} \mathrm{H}\right)$ value of 66.3 Hz in the parent $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl}\right]$ is raised to ca .71 Hz in pyridine. but this solvent exerts little change on the title compound. The ${ }^{15} \mathrm{C}$ NMR data for the title compound and of related derivatives confirm this finding. Thus only one benzylic carbon signal is observed, instead of the two expected if either a cis-TBP or an SP geometry were retained in solution. Indeed, the ${ }^{15} \mathrm{C}$ NMR spectrum of the title compound remained unchanged even at $-90^{\circ} \mathrm{C}$. The magnitude of $\int^{1 /} /{ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}$) is 311.3 Hz , much smaller than that of 429.1 Hz , recorded for the adduct $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsO}\right]$. For the triphenyltin analogue the J of 619.1 Hz similarly implies a four-coordinated tin environment in solution: ©f. 614.3 Hz for $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnCl}\right][36]$.

Acknowledgements

We gratefully acknowledge the support of the Tin Industry (Research and Development) Board, Malaysia, the Institute of Advanced Studies, University of Malaya and the Ming Yu Cultural Foundation. Hong Kong (Grant No. 636011000).

References

[^2]10 E.M. Holt, F.A.K. Nasser, A. Wilson and J.J. Zuckerman, Organometallics, 4 (1985) 2073.
11 R.G. Swisher, J.F. Vollano, R.O. Day and R.R. Holmes, Inorg. Chem., 23 (1984) 3147.
12 J.F. Vollano, R.O. Day, D.N. Rau, V. Chandrasekhar and R.R. Holmes. Inorg. Chem., 23 (1984) 3153.

13 R.R. Holmes and J.A. Deiters, J. Amer. Chem. Soc., 99 (1977) 331.
14 J.J. Harland, R.O. Day, J.F. Vollano, A.C. Sau and R.R. Holmes, J. Amer. Chem. Soc., 103 (1981) 5269.

15 R.R. Holmes, R.O. Day, J.J. Harland. A.C. Sau and J.M. Holmes, Organometallics, 3 (1984) 341.
16 R.R. Holmes, R.O. Day, J.J. Harland, J.M. Holmes, Organometallics, 3 (1984) 347.
17 R.S. Berry, J. Chem. Phys., 32 (1960) 933.
18 R.H. Hoppe, H. Röhrborn and H. Walker, Naturwissenschaften, 51 (1964) 86; B.M. Gatehouse and D.J. Lloyd, J. Solid State Chem., 2 (1970) 410.

19 N.N. Maksimova and V.V. Ilyukhin, Sov. Phys.-Crystallogr. (Engl. Transl.), 12 (1967) 105; W.G. Mumme, Amer. Mineral., 55 (1970) 367.
20 A.C. Sau, R.O. Day, and R.R. Holmes, J. Amer. Chem. Soc., 103 (1981) 1264.
21 S.W. Ng, Chen Wei, V.G. Kumar Das and T.C.W. Mak, J. Organomet. Chem.. 326 (1987) C61.
22 R.C. Poller, The Chemistry of Organotin Compounds, Academic Press, New York, 1970.
23 (a) R.A. Sparks, in F.R. Ahmed (Ed.), Crystallographic Computing Techniques, Munksgaard, Copenhagen, 1976, p. 452; (b) G. Kopfmann and R. Huber. Acta Crystallogr., Sect. A, A24 (1968) 348; (c) A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Crystallogr., Sect. A, A24 (1968) 351: (d) R. Diamond, Acta Crystallogr., Sect. A, A25 (1969) 43; (e) G.M. Sheldrick, in D. Sayre (Ed.), Computational Crystallography, Oxford University Press, New York, 1982, p. 506; (f) International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, England, 1973, pp. 55, 99, 149; (g) J.W. Schilling, in F.R. Ahmed (Ed.), Crystallographic Computing, Munksgaard, Copenhagen, 1970, p. 201.
24 V.G. Kumar Das, C.K. Yap, S.W. Ng, Chen Wei and T.C.W. Mak, J. Organomet. Chem., 311 (1986) 289.

25 A.L. Rheingold, S.W. Ng and J.J. Zuckerman, Organometallics, 3 (1984) 233.
26 C. Pelizzi, G. Pelizzi and P. Tarasconi, J. Organomet. Chem., 124 (1977) 151.
27 G. Pelizzi, Inorg. Chim. Acta, 24 (1977) L24.
28 E.L. Muetterties and L.J. Guggenberger, J. Amer. Chem. Soc., 96 (1974) 1748.
29 G.R. Davies, J.A.J. Jarvis and B.T. Kilbourn, J. Chem. Soc., Chem. Commun., (1971) 1511.
30 C. Glidewell and D.C. Liles, Acta Crystallogr., Sect. B, B35 (1979) 1689.
31 O.A. D'yachenko, A.B. Zolotoi, L.O. Atovmyan, R.G. Mirskov and M.G. Voronkov, Proc. Acad. Sci. USSR (Chem. Sect.) (Engl. Transl.), 237 (1977) 1142.
32 S. Calogero, G. Valle and U. Russo, Organometallics, 3 (1984) 1205.
33 A.L. Beauchamp, M.J. Bennett and F.A. Cotton, J. Amer. Chem. Soc:, 90 (1968) 6675.
34 J. von Seyerl. O. Scheidsteger, H. Berke, and G. Huttner, J. Organomet. Chem., 311 (1986) 85.
35 V.G. Kumar Das, S.W. Ng, P.J. Smith and R. Hill, J. Chem. Soc., Dalton Trans., (1981) 552.
36 J. Holeček, M. Nádvornik, K. Handliĩ and A. Lyčka, J. Organomet. Chem., 241 (1983) 177.

[^0]: " Equivalent isotropic U_{e} defined as one third of the trace of the orthogonathed l., thnot.

[^1]: ${ }^{\text {a }}$ Chemical shift of the CH_{2} group is in the $2.5-2.7 \mathrm{ppm}$ range. ${ }^{\text {b }}$ Lit.: 66.9 Hz : L. Verdonck and G.P. van der Kelen, J. Organomet. Chem., 5 (1966) 532. "In pyridine as solvent. ${ }^{d}$ Stoichiometric amounts in CDCl_{3}.

[^2]: 1 P.G. Hartison, T.J. King and K.C. Molloy, J. Organomet. Chem.. 185 (1980) 199
 2 P.G. Harrison and T.J. King. J. Chem. Soc., Dalton Trans., (1974) 2298.
 3 G.M. Bancroft. B.W. Davies, NG. Payne and T.K. Sham, J. Chem. Soc., Dalon Trans., (1975) 973.
 4 N.G. Furmanova. Yu.T. Struchkov. F.M. Rokhlina and D.N. Kravtsov. J Stract Chem. (Engl. Transl.), 21 (1980) 766.
 5 P.G. Harrison, K Lambert, T.J. King and B. Majee. J. Chem. Soc.. Daton Trans.. (1983) 363.
 6 N.W. Alcock and R.E. Timms, I. Chem. Soc. (A). (1968) ix73.
 7 V.G. Kumar Das. S.W. Ng. Chen Wei and T.C.W. Mak. J. Organomei Chem. 322 (1987) 33 and references therein.
 8 A. Tzschach and K. Jurkshat, Pure Appl. Chem., 58 (1986) 639.
 9 V.G. Kumar Das, K.M. I.o. Chen Wei, S.I. Blunden and T.C.W. Mak. I. Orgamomet. Chem., 322 (1987) 163.

